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Sir: 
A knowledge of the stereochemical consequence of a 

Friedel-Crafts alkylation of an aromatic hydrocarbon 
is an essential component of any theory of reaction 
mechanism, yet no unambiguous study has been re­
ported heretofore.2 Alkylations with alcohols and 
boron fluoride are advantageous because starting ma­
terial and product are not affected by the catalyst.lb 

The reaction of optically active 2-butanol with benzene 
and boron fluoride has been shown to give .rec-butyl-
benzene with 99 % racemization during the alkylation 
step.3 However, the significance of this result is clouded 
by the known rapid rearrangements of secondary sys­
tems in this reaction16; thus, even an encumbered 
2-butyl cation could give the appearance of racemiza­
tion by rapid equilibration of the cationic charge be­
tween the 2- and 3-positions.2 

This ambiguity is avoided with the isopropyl system 
which is known not to rearrange—only one secondary 
cation position is available. Mislow, O'Brien, and 
SchaeferV preparation of optically active 2-propanol-
l-dz, a216D +0.280 ± 0.007° (./ 1, neat), was repeated. 
The expected alkylation product was synthesized from 
optically pure (—)-3-phenylbutanoic acid. The a-
hydrogens were exchanged for deuterium by treatment of 
the methyl ester with sodium methoxide in methanol-d. 
Reaction of the acid with iodine and lead tetraacetate5 

gave l-iodo-2-phenylpropane-l-c?2, which on reduction 
with lithium aluminum deuteride, gave 2-phenylpropane-
1-J3, a 22D +0.48 ± 0.02° (/1, neat). From the known 
stereochemistry of the starting acid,6 the (+)-hydro-
carbon is assigned the R configuration. 

Reaction of the (+)-(S)-2-propanol-l-tf3 with benzene 
and boron fluoride at 5° gave 2-phenylpropane-l-c?8, 
a25D +0.009 ± 0.005° (7 1, neat). A similar alkylation 
in a 60:40 benzene-nitromethane solvent at 50° gave 
the hydrocarbon with a25D +0.033 ± 0.005° (/ 1, 
neat). Hence, even in the absence of rearrangement, 
alkylation proceeds with >93 % racemization and very 
little net inversion of configuration. This racemization 
is not due to prior racemization of alcohol or to subse­
quent racemization of product or to an equilibration 
with olefin. We conclude that the isopropyl cation 
intermediate in the alkylation is a largely free and un­
encumbered cation. The reaction is much like an 
SNI solvolysis and has little of the character of a direct 
displacement reaction or of a 7r-complex with benzene.10,2 
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The Kinetics of the Trypsln-Catalyzed 
Hydrolysis of />-Nitrophenyl 
a-N-Benzyloxycarbonyl-L-lysinate Hydrochloride1 

Sir: 

Although the kinetics of the presteady state and 
steady state of the hydrolysis of the nonspecific sub­
strate, /7-nitrophenyl acetate, by a-chymotrypsin2,3 

and trypsin4 have been delineated, a complete kinetic 
analysis of this kind had not been carried out for the 
corresponding hydrolysis of a specific substrate of 
these enzymes. This paper reports the first such re­
action, the trypsin-catalyzed hydrolysis of p-nitro-
phenyl a-N-benzyloxycarbonyl-L-lysinate hydrochloride, 
which can be analyzed in terms of eq. 1 whose symbols 

K9 ki kz 
E + S ^ z ± ES — > • ES ' — > E + P2 (1) 

+ Pi 

have been defined previously.3 

Previous work with a-chymotrypsin reactions6 in­
dicated that both the presteady-state and steady-state 
reactions with trypsin were probably dependent on a 
basic group of pi£a ~ 7. Therefore the present kinetic 
analysis was carried out at pH 2.66. At this low pH, 
the rate of the presteady-state reaction was indeed 
slow, slow enough in fact to be measured on a Cary 
Model 14 spectrophotometer. Using these conditions 
we were able to observe the major part of the presteady-
state liberation of /?-nitrophenol (occurring in about 
the first 30 sec. of reaction), followed by a slow, steady-
state (zero-order) liberation of p-nitrophenol (Figure 1). 
Presteady-state rate constants at different initial sub­
strate concentrations were calculated by graphically 
extrapolating the steady-state straight line of a p-
nitrophenol vs. time curve and plotting the logarithm 
of the difference between this extrapolated line and the 
experimental curve as a function of time. The experi­
mental points give good straight lines, the slope of which 
yields the first-order rate constant, b (Table 1). The 
definition of b, based on eq. 1 and S0;» Es,, is3 

b = (fc2 + fc3)So + k,Ks 

So + Ks 

A plot of Ijb vs. 11S0, which yields a straight line in the 
a-chymotrypsin-catalyzed hydrolysis of /»-nitrophenyl 
acetate, gives instead for the present data a very definite 
curvature. The obvious explanation in terms of eq. 2 
is that the condition (Zc2 + /C3)S0 » ktKs is not satis-
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Figure 1. The trypsin-catalyzed hydrolysis of p-nitrophenyl 
a-N-benzyloxycarbonyl-L-lysinate at pH 2.66, 0.05 M citrate 
buffer; E0 = 7.40 X 10~8 M; S0 = 2.03 X 10-« M, 1.29% (v./v.) 
acetonitrile-water, 25°. Cary Model 14 spectrophotometer, 8 
in./min. recording chart speed, noise level = 5 X ICr-4 absorbance 
unit. 

fled in this system. Therefore, for the calculation of the 
individual rate constants, we have used a combination 
of the presteady-state data together with data from the 
steady state, detei mined under identical conditions. 

Table I. The Presteady State of the Trypsin-Catalyzed 
Hydrolysis of p-Nitrophenyl 
a-N-Benzyloxycarbonyl-L-lysinate Hydrochloride0 

SoX 
10s, M 

56.5 
38.5 
20.3 
13.7 
9.78 

bX 
102, 

sec.-1 

18.2 
13.4 
9.44 
7.88 
5.71 

ir X 
106, 
M 

5.36 
4.74 
4.57 
4.03 
3.62 

a E0 = 7.40 X IO"6 M. For other conditions, see Table II. 

From the Lineweaver-Burk plot for the steady state, 
kcatEo and K5Jk2E0 were determined from the intercept 
and the slope, respectively. Equation 2 may be rear­
ranged to eq. 3. The quotient of KsIk2E0 divided by 

\/ccat£o ktEo)' kJctEo ^ kthEo w 

the intercept of a plot of the left side of eq. 3 vs. S0, 
Kajk2kiE0, yields fc3. The product of the slope of this 
plot (MhkiEo) and fccat£o ( = k2ksE0l(k2 + Zc3)) yields 
(k2 + Zc3) and thus k2. Knowledge of the k2\k* ratio 
(27.6) then permits the calculation of Ks from ATm(app) 
= AV(I + (fc2/fc3)). The rate constants are summarized 
in Table II. 

Table II. The Trypsin-Catalyzed Hydrolysis of p-Nitrophenyl 
a-N-Benzyloxycarbonyl-L-lysinate Hydrochloride"1 -« 

k, 
K. 

0.395 sec.~l 

1.43 X 10-2 sec." 
7.95 X 10-* M 

« 25.0°, 1.29% (v./v.) acetonitrile-water, pH 2.66, 0.05 M citrate. 
6 Worthington 2 X crystallized, lyophilized bovine trypsin (TRL 
6256); age of solution: >20 min. and <4 hr. c The substrate was 
a Cyclo Chemical Corp. product, m.p. 151°, Ia]20D 21.6° (c 2, 
dimethylformamide).6 

Knowledge of the rate and equilibrium constants of 
the reaction permits the calculation of the enzyme 

concentration from •K, the "initial burst" of ^-nitro-
phenol, as a function of the substrate concentration. 
Values of -K were determined by graphical extrapola­
tion, to t = 0, of the differences between the steady-state 
extrapolated linesand the absorbances at time t (Table 1). 
By plotting l/y/v as a function of 1/S0 we obtain a 
straight line (using the value of l/.Km(app) from the 
steady-state kinetics as an additional point). The 
intercept of this plot on the ordinate gives6 X0 = E0I(I 
+ (Jc^k2)Y, and thus E0 = 6.45 X 10~6 M, indicating 
a purity of the enzyme, by weight, of 50 %. Since our 
system of equations is redundant, we can calculate E0 
in an independent way: from k2 and k%, we can cal­
culate fccat, and then from the experimental value of 
Arcat£0, E0 = 7.40 X 10~6 M (57% purity by weight). 
The agreement of the two E0 values seems reasonable, 
considering the experimental difficulties and the 
complexity of the calculations.7 

The observation of "initial burst" of />-nitrophenol 
and of the kinetics of both the presteady-state and 
steady-state reactions are satisfactorily described by the 
three-step mechanism of eq. 1. These observations 
are consistent with the conclusion that, within experi­
mental error, the totality of the tryptic hydrolysis of p-
nitrophenyl a-N-benzyloxycarbonyl-L-lysinate hydro­
chloride involves a single reaction pathway with the 
formation of an a-N-benzyloxycarbonyl-L-lysyl-trypsin 
intermediate. This substrate is the most specific 
substrate of trypsin, based on its fccat(lim) = 170 sec.-1, 
the fastest known trypsin catalysis. Studies of the pH 
dependence of this reaction show that /ccat is dependent, 
as usual, on a single basic group of p£a 6.80 (/ = 0.05) 
from pH 2 to pH 7.4, indicating that the results ob­
tained here at pH 2.66 may be reasonably extrapolated 
to neutral pH. Thus, the present observations must 
be pertinent to the pathway of trypsin catalysis. 
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The Trypsin-Catalyzed Hydrolysis of the 
/j-Nitrophenyl, Methyl, and Benzyl Esters 
of a-N-Benzyloxycarbonyl-L-lysine1 

Sir: 
The first step in the elucidation of the mechanism of 

any reaction is the establishment of the reaction path­
way, that is, the characterization of intermediates 
formed in the reaction. Several pieces of evidence 
indicate that trypsin-catalyzed reactions proceed through 
an acyl-enzyme intermediate. The most important 
experimental indications are: (1) the methyl, ethyl, 
isopropyl, benzyl, and cyclohexyl esters of a-N-
benzoyl-L-arginine are hydrolyzed with identical rate 
constants by trypsin2; (2) acetyl-trypsin is formed in 
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